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Hybrid-Mode Analysis of Arbitrarily Shaped
Planar Microwave Structures by the
Method of Lines

STEPHAN B. WORM AND REINHOLD PREGLA, SENIOR MEMBER, IEEE

Abstract —This paper presents a method for analyzing arbitrarily shaped
planar microwave structures, which is based on the method of lines and
applies to both resonant and periodic structures in microstrip, slotline, and
finline circuits. Numerical results are presented for some selected struc-
tures. . ‘ '

1. INTRODUCTION

HE CHARACTERIZATION of planar structures

(e.g., microstrip, slotline, and finline) is important in
microwave integrated circuit design. The considered struc-
tures consist of two or more homogeneous layers, i.e.,
dielectric substrates or air regions, with various types of
metallization located on the interfaces between the layers.
Some typical cross sections are shown in Fig. 1

In the following, it will be assumed that the metallization
has vanishing thickness and that the structures are shielded
with perfectly conducting walls. Also, in cases of symme-
try, magnetic walls may occur. .

Recently, an efficient method for calculating the disper-
sion characteristics of these types of planar transimission
lines was published [1], [2], which is based on the method
of lines. With this method, the cross sections are discretized
in one direction, whereas the other directions are treated
analytically. The object of this paper is to show how the
method of lines may be extended to two-dimensional dis-
cretization for the analysis of resonant and periodic planar
microwave structures.

In principle, - arbitrarily shaped resonators may be
analyzed, as is demonstrated for a triangular microstrip
resonator. The method is accurate enough to derive the
characteristic properties of discontinuities from the calcu-
lated resonant frequencies. As an example, the end effect
of a shorted slotline is investigated. '

Another important class of planar microwave structures
is formed by periodic structures (e.g., meander-type delay
lines). Periodic structures have also been proposed for the
phase-équalization of odd and even modes in order to
improve the properties of microstrip couplers [3]. Here, the
method of lines may also be applied successfully.
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Fig. 1.

Cross sections of some planar microwave structures.

a 1

Fig. 2. Position of the discretization lines for a rectangular mictostrip
resonator (+ for ¥ ¢ and o for ¥ lines).

Advantages of the presented method are its easy formu-
lation and its simple convergence behavior. There is no
need to specify specially suited expansion functions, which
is particularly advantageous to the analysis of odd-shaped
resonators or if the expansion functions would be complex
quantities, as is the case with periodic structures. With
conventional finite difference methods, large systems of
equations - are solved directly. With - this - method a -
problem-oriented discrete Fourier transform is applied, o
the main part of the problem is solved in a transformed
domain, where only diagonal matrices occur. The. final
equations in the original domain are solved with matrices
of considerably reduced size. '

II. THE ANALYSIS OF PLANAR RESONATORS

The principles of the method of analysis will be demon-
strated for a simple rectangular microstrip resonator (Fig.
2). The extension to multilayered structures like slotlines
and suSpended striplines is straightforward.

The electromagnetic field in each homogeneous region is
described by two scalar potential functions ¥¢ and ¥* that
satisfy the Helmholtz equation and the boundary condi-
tions at the shielding and symmetry walls. '

The field components are then found from

E=v x v X(¥0,) /joc~ v X (¥T.)
H=v x(¥,)+v X v x(¥"Q,)/jop, (1)
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where the time-dependence according to éxp( jwt) is as-
sumed. At the air—dielectric interface, the continuity condi-
tions for the tangential electric and magnetic field compo-
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Because ¥¢ and ¥” have dual boundary conditions, the
finite difference expression for the first derivative of ¥”
becomes

e . A
nents have to be satisfied as follows: h"_ﬁ— - —[D,]'[¥"]. (5)
1 9%¥f — v} 1 %5 av)
EYI - E 11 = - - = 0
: L jweg, dxdz Ay Jjweg dxdz dy
— 1 az\I,Ie 2\re 1 82\1,[81 2y
EZI_EZII_warEO ( 922 +€rk0‘PI _j(»OE() 922 +kO\I’II =0
vy 1 9%y avg 1 0%
o= Han= gt G 3x0z 3y Jjopg 9x0z -
y  JWiky 0X0Z y o J@py 0x0z
1 [3*¥] a*vt
HzI - HzII = jwﬂo ( 322 + erk(%\I,Ih - (9Z2 - k(%\I,IhI = Jx (2)
with Combining (4) and (5), one obtains for the second-order
ko= wyegpg . derivatives

The final boundary condition states, that the current
density distributions J, and J, be nonzero or that the
tangential electric field components E, and E, be zero on
the metallized parts of the interface.

In order to solve this hybrid field problem numerically,
the considered region is discretized in the x- and z-direc-
tion with meshwidths A, and £, respectively. The discreti-
zation lines for ¥" are shifted by 4, /2 and h,/2 with
respect to the lines for ¥°. In this way, the lateral boundary
conditions at the shielding and symmetry walls can be
fitted easily and discretization error is reduced consider-
ably, as was also found for the case of one-dimensional
discretization [1], [2].

For the example of Fig. 2, the potential function ¥° at
x=(i—05)h, and z=(k—-05)h, (i=1,---,N; k=
1,---,N,) will be denoted by ¥ and interpreted as an
element of the matrix [¥¢], in which the elements are
arranged in the same pattern as in the discretized structure.
It should be noted, however, that [ ¥°] really has a vector
character, which will become important later on.

For the first derivative of ¥¢ with respect to the x-direc-
tion, one obtains

ave

_ ‘I'zirl,k_\l'fk 2
0x | x=um, - hx +0(hx) (3)
z=(k—05",
or, in matrix notation
-1_1 ¥ ¥iw,
ave . .
—_
* dx 1 . :
—1]| ¥¥a Yy, v,
=[DJ[¥°]. (4)

The difference matrix [ D, ] depends on the lateral boundary
conditions for ¥° (see Table I). It is the same operator
matrix as used in the case of one-dimensional discretiza-
tion. Here, it forms the difference between two successive
rows of the matrix [ ¥¢].

A (LA CO B AL O
) AL B PAITO NG

Analogously, the difference operator for the first derivative
of ¥¢ with respect to the z-direction should form the
difference between two successive columns of the matrix
[¥°]. Thus, the difference matrix [D,], as taken from Table
I, will operate on the transpose of the matrix [¥¢]

e

n 2~ D)

(8)
or rather
~>[¥][D]" 9)

In a similar way, the finite difference expression for the
second-order derivative of ¥¢ with respect to z is written as

2\ e
v (10)

dz?
This notation provides simple compatibility with the dif-
ference operators for the x-direction, e.g.,

h: - —[¥][D.)[D.]=[¥][Ds]".

nh, 5% [D)¥ D, (1)
> 9x0dz x 23
Working out this expression for the above example yields
82\1,8 € 4 € €
h.h =‘I'x,k_\I'z,k+1+‘1'i+1,k+1"‘1'1+1,k-

XTE %3z | oo,
z=kh,

(12)

It is evaluated at the discretization line for ¥ from the

function values at the four adjacent V¢ lines, so it fits well

into the continuity equations (2) using only small discreti-
zation distances.

Because of the tri-diagonal structure of the difference

matrices [Df ] and [D;,], the discretized Helmholtz equa-
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tion
2 el
a’fy] | [
dy?

Ll (Y]

[‘I"’ [
i »

= | -+ €,k3[¥e]=0
H;

) (13)
represents a system of N, N, differential equations, that are
all coupled with each other ' v

By means of the orthogonal transformation matrices [7]
and [T¢] (see Appendix) the d1fference matrices are
transformed into diagonal matrices

T pel(r] =diglaz] (14

- mT'[pe)lTe] = diag[dz]. (15)
So, for the elements of the transformed potential matrix

[U]=[r] ¥ ] (16)
one obtains the uncoupled differential equations
U _ > |
ﬁ—dyT].ﬁ—nfk[ULﬁ (17)
with .
2 [d5 ]y, [d] 1
Kik:f'__'(. h2 ot 22 +e,k . (18)

The general solutlon to (17) may be written as a relation
between [U],,’ and 1ts normal derivative in the planes

y=n andy ¥

U(y)
d[U] _ cosh K — J’2)
dy ) Ky sinh kg, (y — )

N ik

By means of this relation, fhe boundary conditions at the

top and bottom shielding can be transformed into the

interface plane y =0, e.g., for the substrate region one
obtains with [U(y =~ d)];, =0

d[U]u o

& (20)

The other potential function ¥* is transformed by means

of the orthogonal matrices [T*] and [7}"] (see Appendix) in

a ‘similar way, so that the continuity equations (2) may be

solved entirely in the transformed- domam T hls yields an
equation of the followmg form: )
[Z,,] (1)

E V4
( ) _ [[ ~u] Z 1)
EJ (2] [Zy]
in which [Z,,] (n,m=1 ,2) are diagonal matrices if the
transformed quantities E Ex Jz, and J are wrltten in

- vector notation.
Because the final boundary condltlon cannot be applied

- Mk ol
y=0_tanhxikd[U(y 0)] ie-

in the transformed domain, (21) has to be transformed .

back into the original domain [4]. For the example of Fig.
2, the metallic stfip makes up the smaller part of the
interface, so in this case the reverse transformation is
performed only for the (reduced) number of lines that pass
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8] (=]

one period

Fig. 3. Discretization lines for a periodic structure,

through the strip. The resulting equation

E\  [[za] [2Zu]] (7

(2) [l | u]] R
EX red [Z21] [ZZZ] red JX red

in which [Z,,,] (n, m =1,2) are now full matrices, will have
nontrivial solutions for the resonant frequencies of the
structure only, which are found from the determmantal

equation

det[Z(f)]rea=0. (23)

At resonance, all field components can be derived from the
current density dlstnbutlon which occurs as an elgenvector
in (22).

111

The analysis of planar periodic Strv_.ictures proceeds simi-
larly to the analysis of resonant structures described abeve.

PERIODIC STRUCTURES

.Sin_h K= ) U(,yz)
Kig d{U] (19)
cosh k(Y1 = »2) G

For the periodic structure in Fig. 3, the potential functions
arid all electromagnetic f1eld components must satisfy
Floquet’s theorem

Yoh(x,y,z+ L)y=ePL¥eh(x, y, z) (24)
where g is the propagation constant in the z-direction and
L is the period length. For the x- -direction homogeneous
boundary conditions apply.

- One pemod of the structure is discretized with \I’e lines
located at x = (i —0. 5)h = kh,, and ¥* lines at x = ik,
z=(k +O S)h, (i= N k= 1 -,N,). Thefinite dif—
ference expresswn for the f1rst derlvatlve of ¥* with re-
spect to z is then given by

a\If

h,—— - [¥°][D,]' (25)
with
| -1 1
[D.]= kl , s=e B
s ‘ —1
| (26)
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The difference operator for ¥* and for d¥¢/dz is
—[D,1*, which yields for the second-order derivative of
e
a*we
az?
The Hermitian matrix [ D;,] is transformed into a diagonal

matrix {d?,] by means of the unitary transformation matrix
[T7]

h - =[¥ D)D) = [¥e][Ds]". (27)

(721" [ D[ 7] = diag [ dy,] (28)
where
[dfz] kk ™ —45in2(‘Pk/2) (29)
and
[T7] o =V1/Nerek (30)
with
q)k=27r(k;\71)—BL. (31)

z

On account of the periodic boundary conditions, one
obtains a difference matrix [ D/!] for ¥* equal to [ D], so
the same transformation matrix could be used. However, if
the elements of {7.*] are defined as

nl . J 05
(1], =Leresoom )
in which the shifting of lines is apparent, the expressions
for the first derivatives in the transformed domain remain
real, e.g.,

(/][] T¢] = diag[d.] (33)
with o
[dz]kk=28in(q)k/2)' (34)

The continuity conditions for the tangential field compo-
nents are again solved in the transformed domain. After
the reverse transformation, the final boundary condition
leads to a Hermitian matrix [Z],.4, of which the determi-
nant should vanish

det[Z(w, 8)]1eqa =0. (35)

The solutions to this equation are typically represented as
the dispersion curves in the w-f diagram.

IV. NUMERICAL RESULTS

As a first example, a triangular microstrip resonator is
considered. It should demonstrate that the analysis is not
restricted to rectangular structures. The shielding dimen-
sions are taken large enough to approximate unshielded
structures. Fig. 4 shows that the resonant frequencies ob-
tained with this method agree fairly well with the results
from the transverse-resonance method and even better with
the measurements, both from [5].

The accuracy of about 1 percent will be sufficient for
most applications. If the resonant frequencies are used for
calculating discontinuities, however, a much higher accu-
racy is required, as will be illustrated for the end effect of a
shorted slotline.

20

f/GHz
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Fig. 4. Resonant frequency for a triangular microstrip resonator (e, =
9.7, d=0.635 mm, »=10d). —: this method, ---: transverse-reso-
nance method {5], o ¢ © o: experiment [5].
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Fig. 5. Dispersion characteristics for shielded slotlines. (¢,=9.7, d =
0.635 mm, b=10d, a =w +204d).

A slotline resonator with a cross-section and dispersion
characteristic as depicted in Fig. 5 will have resonant
frequencies given by

_n_ %%
f‘z

(L +2A0) ey

where L is the resonator length.

The effective dielectric constant €. is calculated by the
method of lines from the cross-sectional problem with
negligible error, so the resonant frequency has to be calcu-
lated with a relative error, which is about a factor 2A/ /L
smaller than the error tolerated for the end effect Al

Fig. 6 shows the convergence behavior of the resonant
frequencies in dependence on the discretization distance
h,. The position of the edges is fixed with respect to the
discretization lines by means of the edge parameters p, and
p.. This results in smooth convergence curves, so the
discretization error may be represented in good approxima-
tion by a quadratic or cubic function, from which the
extrapolated values for 4, — 0 are easily derived. The final
result is independent of the actual value of p,.

In Fig. 6, the resonant frequency calculated with p, = 0.25
and 7, =0.5 mm has an error of about 1 percent. Taking

(n=1,2,---)  (36)
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2.0 2.5 3.0

—= hy/mm

Fig. 6. Convergence behavior of the resonant frequency as a function of
the discretization distance /4, and the edge parameter p,. (w=d, L =20
mmj).

— {/GHz

Fig. 7. End effect of a shorted slotline. (Dimensions as in Fig. 5;
L,>12 mm, variable in order to avoid box resonances) —— this
method, ---- Jansen [6].

into account the results obtained at some larger discretiza-
tion distances and applying a least squares method for

quadratic or cubic extrapolation increases the accuracy by

more than one order of magnitude. In this case, the error
for the resonant frequency is estimated to be less than 0.1
percent, including the error from the discretization in the
x-direction (about 0.02 percent with p, = 0.25 and A, =
0.115 mm). Thus, the end effect has an accuracy of about 2
percent. . /

In Fig. 7, the calculated end effect of a shorted slotline is
shown as a function of frequency and compared with
results from the literature [6]. For A /2 resonators, the end
effect was. found to be a few percent larger, whereas
resonators with one full wavelength or more gave identical
results.

As a first example for the analysis of periodic structures
a microstrip meander line is considered. Fig. 8 shows the

calculated dispersion diagram. Up to about 9 GHz, this

diagram may be approximated to some extent by consider-
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Fig. 8. Dispersion diagram of a microstrip meander line (¢, = 2.3, w=
237 mm,d =079 mm, b =10d, a =12w, L = 4w).

| E——

2.0 5 1.0 15 2.0

— 5/

Fig. 9. Effect of periodic slotting on the phase velocities of coupled
microstrip lines (€,=9.6, f=6 GHz, w=d=0.635 mm, b=10d,
L=4g=0.15 mm). — odd mode, ---- even mode.

ing the meander as a straight line and taking into account
the propagation constants f,.., and B.44 of the multiple
coupled lines at 8L =0,27,--+, and BL =u,3m, - -, 16"
spectively. The stopband, however, would not be obtained
by such a simple method.

The final example demonstrates the use of periodic
structures in coupled microstrip lines. The difference be-
tween the phase velocities of the even and odd mode of
these lines leads to bad isolation in microstrip proximity
couplers [3]. To eliminate this effect, transverse periodic
slotting at the inner edges may be applied. Fig. 9 shows
that the slotting has more influence on the odd mode than
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TABLE I
FIRST-ORDER DIFFERENCE MATRICES IN THE ORIGINAL AND THE
TRANSFORMED DOMAIN FOR THE VARIOUS (N FOR NEUMANN, D
FOR DIRICHLET) BOUNDARY CONDITIONS FOR ¥ ¢

boundary
conditions {D] [4] elements of [d] # O
left - right
11 7| o , . (i-.S)w
N -D \\:t: \f:> faly 3 = -2 sin S5
1 N
R =1 AN (i=1,..., N)
B TS O al = 2 sip Hze2)W
D~ N —1\\ AN i 2N+
N,
L =11 L N (i=1, N)
[ 11| fo o _ . dm
D-D —1\ . (dli,q,1 = 2 5in g7
N
\1 N (i=1,..., N)
L Y LO N
1| =
11 o\ . o o AimUw
N - N \ AN tdly_q,3 = -2 sin gy
=11 QQ AN (i=2,...,N)
TABLE II
ELEMENTS OF THE TRANSFORMATION MATRICES
B
boundary o h
conditions (T ]ik [T lik
left - right
]/ 2 (i-.5) (k=.5)® ]/ 2 L ilk=.5)w
N - D N+.5 oS NT .5 o5 SIP RE S
(i,k=1,...,N) (i,k=1,...,N)
2 ;o i(k=.5)m 2 (i-.5) (k-.5)w
b-x Vitz sin 5053 Vi cos N.5
(i,k=1,..., N) (i,k=1,..., N)
]/ 7 . ikm ]/ 2 (i+.5)km
D - D T Sin NTTCOSTﬁ——7k>O
T ko
N+1
(1, %=1,..., N) (i,k=0,1,..., N)
_ 2 (i-.5) (k=17 ]/2 Lo fi=1) (k=)
N N N cos N k>1 N sin N
1
& ¢ k=
(1,k=1, +N) {(i,k=2,...,N)

on the even mode, so it is possible to achieve a phase-
equalization.

APPENDIX

Because the discretizations in both directions may be
treated fully independently, the difference and transforma-
tion matrices are summarized for one-dimensional discreti-
zation only. The difference matrices depend on the lateral
boundary conditions. In Fig. 2, for example, the Neumann
condition (d¥¢/dx =0) at x =0 and the Dirichlet condi-
tion (¥ =0) at x = g /2 are taken into account by putting
Y5 =¥ and ¥y ., ,=0in (3).

The difference and transformation matrices for the vari-
ous combinations of the lateral boundary conditions of ¥¢
are shown in Tables I and I1. The number of lines for V¢ is
denoted by N, which should be replaced by N, and N, for
the respective directions.

If one of the potential functions ¥° and ¥” has Neu-
mann conditions on both side walls, it will have one
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discretization line and one spectral component (a dc com-
ponent) more than the other one, which results in rectangu-
lar matrices [ D] and [d].

The transformations are all derived from the elementary
relation [D][T¢]=[T"]d], e.g.,

[T [ DTl =~ [T [ ) ] [ 7] [ 2,1 ( 72

=-[d.]'4,]
= diag[dz,].
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