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Hybrid-Mode Analysis of Arbitrarily Shaped
Planar Microwave Structures by the

Method of Lines

STEPHAN B. WORM AND REINHOLD PREGLA, SENIOR MEMBER, IEEE

,4bstracf—This paperpresents a method for analyzing arbitrarily shaped

planar microwave structures, which is hased on the method of fines and

applies to both resonant and peridIc structures in microstrip, slotline, and
finline circuits. Numericaf results are presented for some seleeted stric-
tures.

1. INTRODUCTION

T HE CHARACTERIZATION of planar structures

(e.g., rnicrostrip, slotline, and finline) is important in

microwave integrated circuit design, The considered struc-

tures consist of two or more homogeneous layers, i.e.,

dielectric substrates or air regions, with various types of

metallization located on the interfaces between the layers.

Some typical cross sections are shown in Fig. 1

In the following, it will be assumed that the metallization

has vanishing thickness and that the structures are shielded

with perfectly conducting walls, Also, in cases of symme-

try, magnetic walls may occur.

Recently, an efficient method for calculating the disper-

sion characteristics of these types of planar transinission

lines was published [1], [2], which is based on the method

of lines. With thk method, the cross sections are discretized

in one direction, whereas the other directions are treated

analytically. The object of this paper is to show how the

method of lines may be extended to two-dimensional dis-

cretization for the analysis of resonant and periodic planar

microwave structures.

In principle, arbitrarily shaped resonators may be

analyzed, as is demonstrated for a triangular microstrip

resonator. The method is accurate enough to derive the

characteristic properties of discontinuities from the calcu-

lated resonant frequencies. As an example, the end effect

of a shorted slotline is investigated.

Another important class of planar microwave structures

is formed by periodic structures (e.g., meander-type delay

lines). Periodic structures have also been proposed for the

phase-equalization of odd and even modes in order to

improve the properties of microstrip couplers [3]. Here, the

method of lines may also be applied successfully.
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Fig, 1. Cross sections ot’ some planar microwave structures,
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Fig. 2. Position of the discretization lines for a rectangular microstrip
resonator ( + for* eand o for Y?* lines).

Advantages of the presented method are its easy formu-

lation and its simple convergence behavior. There is no

need to specify speciaily suited expansion functions, which

is particularly advantageous to the analysis of odd-shaped

resonators or if the expansion functions would be complex

quantities, as is the case with periodic structures. With

conventional finite difference methods, large systems of

equations are solved directly. With ~this” method a ~‘

problem-oriented discrete Fourier transform is applied, so

the main part of the problem is solved in a transformed

domain, where only diagonal matrices occur. The final

equations in the original domain are solved with matrices

of considerably reduced size.

H. THE ANALYSIS OF PLANAR RESONATORS

The principles of the method of analysis will be demon-

strated for a simple rectangular microstfip resonator (Fig.

2). The extension to multilayered structures like slotlines

and suspended striplines is straightforward.

The electromagnetic field in each homogeneous region is

described by two scalar potential functions T’ and *h that

satisfy the Hehnholtz equation and the boundary condi-

tions at the shielding and symmetry walls.

The field components are then found from

l?=v x v x( Y’iQ/j6J6–vx(*%z)

R=v X(v=ilz)+v x v x(wi=)/joJpo (1)
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where the time-dependence according to exp(@t) is as- Because Ve and Yk, have dual boundary conditions, the

sumed. At the air-dielectric ‘interface, the continuity condi- finite difference expression for the first derivative of Yh

tions for the tangential electric and magnetic field compo- becomes

nents have to be satisfied as follows: ~ J*h
~~+–[Dx]l@]. (5)

(2)

with

The final boundary condition states, that the current

density distributions J, and JX be nonzero or that the

tangential electric field components EZ and EX be zero on

the metallized parts of the interface.

In order to solve this hybrid field problem numerically,

the considered region is discretized in the x- and z-direc-

tion with meshwidths hX and h=, respectively. The discreti-

zation lines for Th are shifted by hX /2 and h= /2 with

respect to the lines for k’. In this way, the lateral boundary

conditions at the shielding and symmetry walls can be

fitted easily and discretization error is reduced consider-

ably, as was also found for the case of one-dimensional

discretization [1], [2].

For the example of Fig. 2, the potential function T’ at

x = (i –0.5)hX and z = (k –0.5)hz (i =1,”” “,NX; k =

1;... , ~,) will be denoted by V; and interpreted as an

element of the matrix [Y ‘], in which the elements are

arranged in the same pattern as in the discretized structure.

It should be noted, however, that [Ve] really has a vector

character, which will become important later on.

For the first derivative of We with respect to the x-direc-

tion, one obtains

aw *:+1, k – *:k——
ax hX

‘ +O(h;) (3)
x= thx

z=(k–05)/12

or, in matrix notation

= [DX][W]. (4)

The difference matrix [DX] depends on the lateral boundary

conditions for T’ (see Table I). It is the same operator

matrix as used in the case of one-dimensional discretiza-

tion. Here, it forms the difference between two successive

rows of the matrix [Ye].

Combining (4) and (5), one obtains for the second-order

derivatives

hz azq’
~=+ –[Dx]’[Dx][q@]= [D;X][*’] (6)

h2 a2*h
—+–[Dx][Dx]’[*h]= [Djx] [@]. (7)

x i3x2

Analogously, the difference operator for the first derivative

of V e with respect to the z-direction should form the

difference between two successive columns of the matrix

[Ve]. Thus, the difference matrix [D,], as taken from Table

I, will operate on the transpose of the matrix [*e]

h a+’
,~+[Dz][w]f (8)

or rather

+ [*e][Dz][. (9)

In a similar way, the finite difference expression for the

second-order derivative of *’ with respect to z is written as

h2 azw
—+-[v’’][Dz]r[Dz] =[w][D:z]t. (10)

‘ azz

This notation provides simple compatibility with the dif-

ference operators for the x-direction, e.g.,

h h azw
—+[DX][W][D,]’.

x zaxaz
(11)

Working out this expression for the above example yields

h h azw

x z dxdz .=,,,
= P;k – *;k +I+v;+l, k+l–wl$l, k.

z=kh,

(12)

It is evaluated at the discretization line for Ti from the

function values at the four adjacent We lines, so it fits well

into the continuity equations (2) using only small discreti-

zation distances.

Because of the tri-diagonal structure of the difference

matrices [ DjX] and [Dz; ], the discretized Helmholtz equa-
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tion

,.
(13)

represents a system of NXN, differential equations, that are

all coupled with each other.

By means of the orthogonal transformation matrices [T;]

and [ T,e] (see Appendix) the difference matrices are

transformed into diagonal matrices

[~] ‘[D:X] [T;]= diag[d&] (14)

[~]t[D~] [~e]=diag[d;Z]. (15)

So, for the elements of the transformed potential matrix

[U]”= [qq’[w][qq (16)

one obtains the uncoupled differential equations

d2[U]i~
—–----lc; k[u]ik=o
, dy’

(17)

with

( [d21ii + [d;zl kk + , ~2Kj’k= —
, h; ).h: ‘0-

(18)

The general solution to (17) maybe written as a relation

between fU]i&’ ~d its normal derivative in the planes

y=yl~d.y=y2 ‘ ‘

[ H
U( yl )

d[U] =
Cosh ‘ik ( Y1 – Y2 )

4“ YI ik ‘ik ‘ifi ‘ik ( Y1 – .h )

By means of this relation, the boundary conditions at the

top and bottom shielding can be transformed into the

interface plane y = O, e.g., for the substrate region one

obtains with [V( y = – d)]ik = O

‘[”]ik

dy
‘ik [b’(y = 0)] ik. (20)

Y=() = tanh Icikd

The other potential function @is transformed by means

of the orthogonal matrices [T:] hd [ T,h] (See Appendix) in

a similar way, so that the continuity equation; (2) may be

solved entirely in the transformed- domairi., T~ yields an

equation of the following form:

()[E=

1()

[%11 [z21 {z

Ex = [~’,1 [~221 Jx
(21)

in which [~.~] (n, m’= ~, 2) are diagonal matrices if the

transformed quantities EZ, 2X, ~,; and ~X are written in

vector notation. ,,

Because the final boundary condition cannot be applied

in the transformed domain, (21) has to be transformed

back into the original domain [4]. For the example of Fig.

2, the metallic sttip makes up the smaller part of the

interface, so in this case the- reverse transformation is

performed only for the (reduced) number of lines that pass
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Fig. 3. Discretization lines for a periodic structure.

through the strip. The resulting equation

()[E,

10
[Zl,][.%21 J. -f) (22)

~ ,ed= [22,1 [2221 ,ed ‘x redE

in which [ Zfl~ ] (n, m =1,2) are now full matrices, will have
nontrivial solutions for the resonant frequencies of the

structure only, which are found from the determinantal

equation

det[z(~)],ed = O. (23)

At resonance, all field components can be derived from the

current density distribution, which occurs as an eigenvector

in (22).

III. PERIODIC STRUCTURES

The analysis of planar periodic structures proceeds simi-

larly to the analysis of resonant structures described abcwe.

1 1
sinh Kik(Y1– Y2) “ U(Y2)

Kik d[U] . (19)

cosh ‘ik ( Y1 – Yz) ‘y y, i~

For the periodic structure in Fig. 3, the potential functions

add all electromagnetic field components must s’atisfy

Floquet’s theorem

‘l’’h(x, y, z + L) = e-j~~yek(x, y, Z) (24)

where /3 is the propagation constant in the z-direction and

L is the period length. For the x-direction homogeneous

boundary conditions apply.

One period of the structure is discretized with Y’ lines

located at x = (i –0.5)hX, z = kh,, and Vk fines at x = ihX,

z = (k+ O.5)h, (i=l,. , .,NX; k =1,. . .,N, ). The finite dif-

ference expression for the first derivative of Ye with re-

spect to z is then given by

with

[.ZI=[”:J+,
–1

(25)

(26)
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The difference operator for Th and for iii!’/dz is

– [D=]”’, which yields for the second-order derivative of

*’

~z a2w
.m~–[W][DJ1 [Dz]*=[ve][D;]l. (27)

The Hermitian matrix [D;] is transformed into a diagonal

matrix [d;, ] by means of the unitary transformation matrix
[~]

[~]** [D~Z] [~]= diag[dj,] (28)

where

[d:,],, = -4sin2(p,/2) (29)

and

[~]l,=~eJ’~k (30)

with

20 i

f/GHz ‘,

16

14

12

.

10 -

— u/mm

Fig. 4. Resonant frequency for a triangular microstrip resonator (C, =
9.7, d = 0.635 mm, b = 10d). —: this method, ---: transverse-reso-
nance method [5], o 000: experiment [5].

27r(k-1)-pLV’ =
iv= “

(31)

On account of the periodic boundary conditions, one

obtains a difference matrix [ DZ~] for @ equal to [ Dz; ], so

the same transformation matrix could be used. However, if

the elements of [Tzh] are defined as

[~h]l, = ~eJ~2+05)V, (32)

in which the shifting of lines is apparent, the expressions

for the first derivatives in the transformed domain remain

real, e.g.,

[~h]*’[DZ] [U] =diag[d,] (33)

with ,.

[dz],, =2sin(rf,\2). (34)

The continuity conditions for the tangential field compo-

nents are again solved in the transformed domain. After

the reverse transformation, the final boundary condition

leads to a Hermitian matrix [Z] ,e~, of which the determi-

nant should vanish

det[Z(a, /3)],,~ =0. (35)

The solutions to this equation are typically represented as

the dispersion curves in the w –~ diagram.

IV. NUMERICAL I@ULTS

As a first example, a triangular microstrip resonator is

considered. It should demonstrate that the analysis is not

restricted to rectangular structures. The shielding dimen-

sions are taken large enough to approximate unshielded

structures. Fig. 4 shows that the resonant frequencies ob-

tained with this method agree fairly well with the results

from the transverse-resonance method and even better with

the measurements, both from [5].

The accuracy of about 1 percent will be sufficient for

most applications. If the resonant frequencies are used for

calculating discontinuities, however, a much higher accu-

racy is required, as will be illustrated for the end effect of a

shorted slotline.

Fig. 5. Dispersion characteristics for shielded slotlines. ((, = 9.7, d =
0.635 mm, b=lOd, a = w +20d).

A slotline resonator with a cross-section and dispersion

characteristic as depicted in Fig. 5 will have resonant

frequencies given by

f=!! ‘0

2 (L+2Al)&
(rz=l,2,... ) (36)

where L is the resonator length.

The effective dielectric constant ceff is calculated by the

method of lines from the cross-sectional problem with

negligible error, so the resonant frequency has to be calcu-

lated with a relative error, which is about a factor 2A1/L

smaller than the error tolerated for the end effect Al.

Fig. 6 shows the convergence behavior of the resonant

frequencies in dependence on the discretization distance

hZ. The position of the edges is fixed with respect to the

discretization lines by means of the edge parameters pX and

pZ. This results in smooth convergence curves, so the

discretization error maybe represented in good approxima-

tion by a quadratic or cubic function, from which the

extrapolated values for h, ~ O are easily derived. The final

result is independent of the actual value of pZ.

In Fig. 6, the resonant frequency calculated withpZ = 0.25

and h, = 0.5 mm has an error of about 1 percent. Taking
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Fig. 6. Convergence behavior of the resonant frequency as a function of
the discretization distance hz and the edge parameter p,. (w= d, ~ = 20
mm).
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Fig. 7. End effect of a shorted slotline. (Dimensions as in Fig. 5;
Lb> 12 mm, variable in order to avoid box resonances.) — this
method, ---- Jansen [6].

into account the results obtained at some larger discretiza-

tion distances and applying a least squares method for

quadratic or cubic extrapolation increases the accuracy by

more than one order of magnitude. In this case, the error

for the resonant frequency is estimated to be less than 0.1

percent, including the error from the discretization in the

x-direction (about 0.02 percent with pX = 0.25 and hX =

0.115 mm). Thus, the end effect has an accuracy of about 2

percent.

In Fig. 7, the calculated end effect of a shorted slotline is

shown as a function of frequency’ and compared with

results from the literature [6]. For A/2 resonators, the end

effect was. found to be a few percent larger, whereas

resonators with one full wavelength or more gave identical

results.

As a first example for the analysis of periodic structures

a microstrip meander line is considered. Fig. 8 shows the

calculated dispersion diagram. Up to about 9 GHz, this

diagram may be approximated to some extent by consider-

,

Fig. 8.

Fig. 9.

14

f /GHz r
‘up<--------/

stop band

Dispersion diagram of a rnicrostnp meander line (c, = 2.3, w =
2.37 mm, d = 0.79 mm, b =lOd, a =12w, L = 4w).
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Effect of periodic slotting on the phase velocities of coupled
rnicrostnp lines (c, = 9.6, ~ = 6 GHz, w = d = 0.635 mm, b = 10d,
L = 4g = 0.15 mm). — odd mode, ---- even mode.

ing the meander as a straight line and taking into account

the propagation constants ~eve~ and ~0~~ of the multiple

coupled lines at ~L = 0,2r, . . . . and ~L = .z-,3w, . . . . re-

spectively. The stopband, however, would not be obtained

by such a simple method.

The final example demonstrates the use of periodic

structures in coupled “microstrip lines. The difference be-

tween the phase velocities of the even and odd mode of

these lines leads to bad isolation in microstrip proximity

couplers [3]. To eliminate this effect, transverse periodic

slotting at the inner edges may be applied. Fig. 9 shows

that the slotting has more influence on the odd mode than
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TABLE I
FIRST-ORDER DIFFERENCE MATRICES IN THE ORIGINAL AND THE

TRANSFORMED DOMAIN FOR THE VARIOUS (N FOR NEUMANN, D

FOR DIRICHLET) BOUNDARY CONDITIONS FOR V e

tmboundary
conditions [D]
left - r~ght

[1

-1 1
N-D p,

-1

E[1

1
D-N

-’\l

D–D [1-;>l-1
[1-11

N-N
\\,

L 1

‘d’ 1--’0’ ‘d]* 0 I

[1~&Q\ [d]i_, ,i = -2 sin *

(i=2, . . ..N)

TABLE II
ELEMENTS OF THE TRANSFORMATION MATEUCES

boundary
conditions [Te]ik
left - right

[Thl,k

! 1

N-D G COs —
H(k-.5)r

N+.5 ~ s. W

(l, k=l, . . ..N) (x, k=l, . . ..N)

D–N ~ *in &&M
s Cos

(i-.5 )(k-.5),
N+.5

(,, k=l, . . ..N) (i, k=l, . . ..N)

I I (,, k=l, . . ..N) I (i, k= 0,1, . . ..N) I

N-N v%Cos N

[,-.5 )(k-lln
~ k> g.

~ln JI-1) (k-l)n

~ , k.,

(,, k=l, . . ..N) (,, k=2, . . ..N)

on the even mode, so it is possible to achieve a phase-

equalization.

APPENDIX

Because the discretizations in both directions may be

treated fully independently, the difference and transforma-

tion matrices are summarized for one-dimensional discreti-

zation only. The difference matrices depend on the lateral

boundary conditions. In Fig. 2, for example, the Neumann

condition ( dT’/ dx = O) at x = O and the Dirichlet condi-

tion ( V?e= O) at x = a/2 are taken into account by putting

T;~ = ~~,~ and ~fix+l,~ = O in (3).

The difference and transformation matrices for the vari-

ous combinations of the lateral boundary conditions of T e
are shown in Tables I and II. The number of lines for V e is

denoted by N, which should be replaced by N, and N, for

the respective directions.

If one of the potential functions W’ and Wh has Neu-

mann conditions on both side walls, it will have one

discretization line and one spectral component (a dc com-

ponent) more than the other one, which results in rectangu-

lar matrices [D] and [d].

The transformations are all derived from the elementary

relation [ ll][~e] = [Tk ][~], e.g.,

[T;] ’[ D:x][T’] =-[ T;] ’[ Dx]’[q’][q’]’[Dx] [T;]

[1]

[2]

[3]

[4]

[5]

[6]

=-[dX]’[dX]

= diag [ d&].
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